网站首页 教授主页 组内成员 研究方向 发表论文 专利技术 仪器设备 组内动态 招生招聘

  栏目导航

2022

2021

2020

2019

2018

2017

2016

2015

2014

更多

 
 

更多

当前位置: 网站首页 > 发表论文 > 更多

 
1.Zhao Y., Song L., Zhang Z.P.* and Qu L.T.*,“Stimulus-responsive Graphene Systemstowards Actuator Applications”, Energy Environ. Sci., 2013, 6(12), 3520–3536. (Review).

2.Cheng H.H., Liu J., Zhao Y., Hu H.G., Zhang Z.P., Chen N., Jiang L., Qu L.T.*, “Graphene Fibers with Predetermined Deformation as Moisture-Triggered Actuators and Robots”, Angew. Chem. Int. Ed., 2013, 52(40), 10482–10486.

3.Hu C.G.?, Zhai X.Q.?, Liu L.L., Zhao Y., Jiang L., Qu L.T.*, “Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates”, Sci. Rep. 2013, 3, 2065; DOI:10.1038/srep02065.

4.Meng Y.N., Zhao Y., Hu C.G., Cheng H.H., Hu Y., Zhang Z.P., Shi G.Q., Qu L.T.*, “All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles”, Adv. Mater., 2013, 25(16) 2326–2331.

5.Zhao Y., Jiang C.C., Hu C.G., Dong Z.L., Xue J.L., Meng Y.N., Zheng N., Chen P.W., Qu L.T.*, “Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers”, ACS Nano, 2013, 7(3), 2406–2412.

6.Zhao Y., Liu J., Hu Y., Cheng H., Hu C., Jiang C., Jiang L., Cao A.Y., Qu L.T.*, “Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-mediated Graphene Foam Electrodes”, Adv. Mater., 2013, 25(4), 591–595.

7.Hu C.G., Xiao Y., Zhao Y., Chen N., Zhang Z.P., Cao M.H., Qu L.T.*, “Highly Nitrogen-Doped Carbon Capsules: Scalable Preparation and High-Performance Applications in Fuel Cells and Lithium Ion Batteries”, Nanoscale, 2013, 5(7), 2726–2733.

8.Zhang J., Zhao F., Zhang Z.P.*, Chen N., Qu L.T.*, “Dimension-tailored Functional Graphene Structures for Energy Conversion and Storage”, Nanoscale, 2013, 5(8), 3112–3126. (Review).

9.Cheng H.H., Dong Z.L., Hu C.G., Zhao Y., Hu Y., Qu L.T.*, Chen N., Dai L.M.*, “Textile Electrodes Woven by Carbon Nanotube/Graphene Hybrid Fibers for Flexible Electrochemical Capacitors”, Nanoscale, 2013, 5(8), 3428–3434.

10.Xue J.L., Zhao Y, Cheng H.H., Hu C.G., Hu Y, Meng Y.N., Shao H.B., Zhang Z.P. and Qu L.T.*, “An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor”, Phys. Chem. Chem. Phys., 2013, 15(21), 8042–8045.

11.Hu Y, Zhao Y, Lu G.W., Chen N, Zhang Z.P.*, Li H, Shao H.B. and Qu L.T.*, “Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors”, Nanotechnology, 2013, 24(19), 195401–195407.

12.Hu C.G., Mou Z.Y., Lu G.W., Chen N.*, Dong Z.L., Hu M.J., Qu L.T.*, “3D Graphene-Fe3O4Nanocomposites with High-Performance Microwave Absorption”, Phys. Chem. Chem. Phys., 2013, 15(31), 13038–13043.

13.Dong Z.L., Zhou C., Cheng H.H., Zhao Y., Hu C.G., Chen N., Zhang Z.P., Luo H.X., Qu L.T.*, “Carbon nanotube-nanopipe composite vertical arrays for enhanced electrochemical capacitance”, Carbon, 2013, 64, 507–515.

14.Wang Y.H., Bian K., Hu C.G., Zhang Z.P.*, Chen N., Zhang H.M., Qu L.T.*, “Flexible and Wearable Graphene/Polypyrrole Fibers towards Multifunctional Actuator Applications”, Electrochem. Commun., 2013, 35, 49–52.

15.Hu C.G., Zhao Y., Cheng H.H., Hu Y., Shi G.Q., Dai L.M., Qu L.T.*, “Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid”, Chem. Commun., 2012, 48(97), 11865–11867.

16.Hu C.G., Zhao Y., Cheng H.H, Wang Y.H., Dong Z.L., Jiang C.C., Zhai X.Q., Jiang L., Qu L.T.*, “Graphene Microtubings: Controlled Fabrication and Site-specific Functionalization”, Nano Lett., 2012, 12(11), 5879–5884.

17.Liu J., Wang Z., Zhao Y., Cheng H.H., Hu C.G., Jiang L., Qu L.T.*, “Three-dimensional Graphene/polypyrrole Hybrid Electrochemical Actuator”, Nanoscale, 2012, 4(23), 7563–7568.

18.Zhao Y., Hu C.G., Hu Y., Cheng H.H., Shi G.Q., Qu L.T.*, “A Versatile, Ultralight, Nitrogen-doped Graphene Framework”, Angew. Chem. Int. Ed., 2012, 124(45), 11533–11537.

19.Zhang Z. P.*, Zhang J., Chen N., Qu L.T.*, “Graphene Quantum Dots: An Emerging Material for the Energy-Related Applications and Beyond”, Energy Environ. Sci., 2012, 5(10), 8869–8890. (Review).

20.Hu C.G., Cheng H.H., Zhao Y., Hu Y., Liu Y., Dai L.M., Qu L.T.*, “Newly-Designed Complex Ternary Pt/PdCu Nanoboxes Anchored on Three-Dimensional Graphene Framework for Highly Efficient Ethanol Oxidation”, Adv. Mater., 2012, 24(40), 5493–5498.

21.Ding Y., Cheng H.H., Zhou C., Fan Y.Q., Zhu J., Shao H.B., Qu L.T.*, “Functional microspheres of graphene quantum dots”, Nanotechnology, 2012, 23(25), 255605 (7pp).

22.Dong Z.L., Jiang C.C., Cheng H.H., Zhao Y., Shi G.Q., Jiang L., Qu L.T.*, “Facile fabrication of light, flexible and multifunctional graphene fibers”, Adv. Mater., 2012, 24(14), 1856–1861.

23.Li Y., Zhao Y., Cheng H., Hu Y., Shi G.Q., Dai L.M., Qu L.T.*, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups”, J. Am. Chem. Soc., 2012, 134(1), 15–18.

24.Cheng H., Zhao Y., Fan Y.Q., Xie X.J., Qu L.T.*, Shi G.Q.*, “Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement”, ACS Nano, 2012, 6(3), 2237–2244.

25.Zhang L.L., Cheng H., Zhang H.M.*, Qu L.T.*, “Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in graphene oxide–Nafion nanocomposite film”, Electrochim. Acta, 2012, 65, 122–126.

26.Hu Y., Zhao Y., Li Y., Li H., Shao H.B., Qu L.T.*, “Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes”, Electrochim. Acta, 2012, 66, 279–286.

27.Liu J., Wang Z.,* Xie X.J., Cheng H., Zhao Y., Qu L.T.*, “A rationally-designed synergetic polypyrrole/graphene bilayer actuator”, J. Mater. Chem., 2012, 22(9), 4015–4020.

28.Fan Y.Q., Cheng H., Zhou C., Xie X.J., Liu Y., Dai L.M., Zhang J., Qu L.T.*, “Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS”, Nanoscale, 2012, 4 (5), 1776–1781.

29.Wang X., Bai H., Jia Y., Zhi L.J., Qu L.T., Xu Y.X., Li C., Shi G.Q., “Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials”, RSC Adv., 2012, 2(5), 2154–2160.

30.Hu Y., Zhao Y., Li Y., Xie X.J., Li H., Dai L.M., Qu L.T.*, “Electrochemical Introduction of Active Sites into Super-long Carbon Nanotubes for Enhanced Capacitance”, Chem. Res. Chin. Univ., 2012, 28(2), 302–307.

31.Li Y., Hu Y., Zhao Y., Shi G.Q., Deng L., Hou Y.B., Qu L.T.*, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics”, Adv. Mater., 2011, 23(6), 776–780.

32.Qu L.T.*, Vaia R.A., Dai L.M.*, “Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications”, ACS Nano, 2011, 5(2), 994–1002.

33.Xie X.J., Bai H., Shi G.Q., Qu L.T.*, “Load-tolerant, highly strain-responsive graphene sheets”, J. Mater. Chem., 2011, 21(7) 2057–2059.

34.Zhao Y., Bai H., Hu Y., Li Y., Qu L.T.*, Zhang S.W., Shi G.Q.,* “Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes”, J. Mater. Chem., 2011, 21(36), 13978–13983.

35.Ye Y.M., Mao Y., Wang F., Lu H.B., Qu L.T., Dai L.M., “Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings”, J. Mater. Chem., 2011, 21(3), 837–842.

36.Du F., Qu L.T., Xia Z.H., Feng L.F., Dai L.M., “Membranes of vertically aligned superlong carbon nanotubes”, Langmuir, 2011, 27(13), 8437–8443.

37.Yang W.Y., Qu L.T., Zheng R.K., Liu Z.W., Ratinac K.R., Shen L., Yu D.S., Yang L., Barrow C.J., Ringer S.P., Dai L.M., Braet F., “Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids”, Chem. Mater., 2011, 23(11), 27

38.Lu W., Hartman R., Qu L.T., Dai L.M., “Nanocomposite electrodes for high-performance supercapacitors”, J. Phys. Chem. Lett., 2011, 2(6), 655–660.

39.Welna D.T., Qu L.T., Taylor B.E., Dai L.M., Durstock M.F., “Vertically aligned carbon nanotube electrodes for lithium-ion batteries”, J. Power Sources, 2011, 196(3), 1455–1460.

40.Xie X.J., Qu L.T.*, Zhou C., Li Y., Zhu J., Bai H., Shi G.Q.*, Dai L.M.*, “An asymmetrically surface-modified graphene film electrochemical actuator”, ACS Nano, 2010, 4(10), 6050–6054.

41.Qu L.T., Liu Y., Baek J.B., Dai L.M., “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells”, ACS Nano, 2010, 4 (3), 1321–1326.

42.Zhao Y., Hu Y., Li Y., Zhang H., Zhang S.W., Qu L.T.*, Shi G.Q., Dai L.M.*, “Super-long aligned TiO2/carbon nanotube arrays”, Nanotechnology, 2010, 21(50), 505702(1–7).

43.Li Y., Zhou C., Xie X.J., Shi G.Q. Qu L.T.*, “Spontaneous, catalyst-free formation of nitrogen-doped graphitic carbon nanocages”. Carbon, 2010, 48(14), 4190–4196.

44.Qu L.T.*, Zhang H., Zhu J., Dai L.M.*, “Tunable assembly of carbon nanospheres on single-walled carbon nanotubes”, Nanotechnology, 2010, 21(30), 305602(1–8).

45.Qu L.T.*, Zhao Y., Hu Y., Zhang H., Li Y., Guo W., Luo H.X. Dai L.M.*, “Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes”, J. Mater. Chem., 2010, 20(18), 3595–3599.

46.Murphey M.B., Bergeson J.D., Etzkorn S.J., Qu L.T., Li L., Dai L.M., Epstein A.J., “Spin-valve behavior in porous alumina-embedded carbon nanotube array with cobalt nanoparticle spin injectors”, Synth. Met., 2010, 160(3), 235–237.

47.Patton S.T., Zhang Q.H., Qu L.T., Dai L.M., Voevodin A.A., Baur J., “Electromechanical characterization of carbon nanotubes grown on carbon fiber”, J. Appl. Phy., 2009, 106(10), 104313(1–9).

48.Ganguli S., Sihn S., Roy A.K., Dai L.M., Qu L.T., “Metalized nanotube tips improve through thickness thermal conductivity in adhesive joints”, J. Nanosci. Nanotech., 2009, 9(3), 1727–1733.

49.Lu W., Qu L.T., Henry K., Dai L.M., “High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes”, J. Power Sources, 2009, 189(2), 1270–1277.

50.El Khoury J.M., Zhou X.L., Qu L.T., Dai L.M., Urbas A., Li Q., “Organo-soluble photoresponsive azo thiol monolayer-protected gold nanorods”, Chem. Commun., 2009, (16), 2109–2111.

51.Qu L.T., Dai L.M., Stone M., Xia Z.H., Wang Z.L., “Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off”, Science, 2008, 322(5899), 238–242.

52.Peng Q., Qu L.T., Dai L.M., Park K., Vaia R., “Asymmetrically charged carbon nanotubes by controlled functionalization”, ACS Nano, 2008, 2(9), 1833–1840.

53.Qu L.T., Du F., Dai L.M., “Preferential syntheses of semiconducting vertically-aligned single-walled carbon nanotubes for direct use in FETs”, Nano Lett., 2008, 8(9), 2682–2687.

54.Qu L.T., Peng Q., Dai L.M., Spinks G.M., Wallace G.G., Baughman R.H., “Carbon nanotube eaps: opportunities and challenges”, MRS Bulletin, 2008, 33(3), 215–224.

55.Heltzel A.J., Qu L.T., Dai L.M., “Optoelectronic property modeling of carbon nanotubes grafted with gold nanoparticles”, Nanotechnology, 2008, 19(24), 245702 (1–8).

56.Bergeson J.D., Etzkorn S.J., Murphey M.B., Qu L.T., Yang J.B., Dai L.M., Epstein A.J. “Iron nanoparticle driven spin-valve behavior in aligned carbon nanotube arrays”, Appl. Phys. Lett., 2008, 93(17), 172505 (1–3).

57.Sihn S., Ganguli S., Roy A., Qu L.T., Dai L.M., “Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes”, Composites Science and Technology, 2008, 68(3–4), 658–665.

58.Bhushan B., Galasso B., Bignardi C., Nguyen C.V., Dai L.M., Qu L.T., “Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays”, Nanotechnology, 2008, 19(12), 125702 (1–10).

59.Wang H.X., Fang J., Cheng T., Ding J., Qu L.T., Dai L.M., Wang X., Lin T., “One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity”, Chem. Commun., 2008, (7), 877–879.

60.Chen W., Qu L.T., Chang D.W., Dai L.M., Ganguli S., Roy A., “Vertically-aligned carbon nanotubes infiltrated with temperature-responsive polymers: smart nanocomposite films for self-cleaning and controlled release”, Chem. Commun., 2008, (2), 163–165.

61.Qu L.T., Dai L.M., “Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties”, Adv. Mater., 2007, 19(22), 3844–3849.

62.Qu L.T., Dai L.M., “Polymer-masking for controlled functionalization of carbon nanotubes”, Chem. Commun., 2007, (37), 3859–3861.

63.Qu L.T., Dai L.M., “Direct growth of three-dimensional multicomponent micropatterns of vertically aligned single-walled carbon nanotubes interposed with their multi-walled counterparts on Al-activated iron substrates”, J. Mater. Chem., 2007, 17(32), 34

64.Yang Y., Qu L.T., Dai L.M., Kang T.S., Durstock M., “Electrophoresis coating of titanium oxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials”, Adv. Mater., 2007, 19(9), 1239–1243.

65.Yang J., Qu L.T., Zhao Y., Zhang Q., Dai, L.M., Baur J.W., Maruyama B., Vaia R.A., Shin E., Murray P.T., Luo H.X., Guo Z.X., “Multicomponent and multidimensional carbon nanotube micropatterns by dry contact transfer”, J. Nanosci. Nanotech., 2007, 7(4–5

66.Qu L.T., Chen W., Dai L.M., Roy A., Tolle T.B., “Polymer and aligned carbon nanotube nanocomposites and nanodeives”, SAMPE Journal, 2007, 43(6), 38–46.

67.Zhou X.L., El Khoury J.M., Qu L.T., Dai L.M., Li Q., “A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents”, J. Colloid & Interface Sci., 2007, 308(2), 381–384.

68.Qu L.T., Dai L.M., Osawa E., “Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes”, J. Am. Chem. Soc., 2006, 128(16), 5523–5532.

69.Qu L.T., Zhao Y., Dai L.M., “Carbon microfibers sheathed with aligned carbon nanotubes: Towards multidimensional, multicomponent, and multifunctional nanomaterials”, Small, 2006, 2(8–9), 1052–1059.

70.Hong Z.M., Shi G.Q., Wu X.F., Qu L.T., “Fabrication of highly hydrophobic films of poly(3-hexadecyl pyrrole) nanoparticles by Langmuir-Blodgett technique”, Chin. J. Polymer Sci., 2006, 24 (5), 457–462.

71.Singh U., Prakash V., Abramson A.R., Chen W., Qu L.T., Dai L.M., “Mechanical characterization device for in situ measurement of nanomechanical properties of micro/nanostructures”, Appl. Phys. Lett., 2006, 89 (7), 073103 (1–3).

72.Qu L.T., Dai L.M., “Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes”, J. Am. Chem. Soc., 2005, 127(31), 10806–10807.

73.Qu L.T., Dai L.M., “Novel silver nanostructures from silver mirror reaction on reactive substrates”, J. Phys. Chem. B, 2005, 109(29), 13985–13990.

74.Ma M.M., Qu L.T., Shi G.Q., “Glucose oxidase electrodes based on microstructured polypyrrole films”, J. Appl. Polym. Sci., 2005, 98(6), 2550–2554.

75.Lu G.W., Qu L.T., Shi G.Q., “Electrochemical fabrication of neuron-type networks based on crystalline oligopyrene nanosheets”, Electrochim. Acta, 2005, 51(2), 340–346.

76.Fan B., Qu L.T., Shi G.Q., “Electrochemical polymerization of anthracene in boron trifluoride diethyl etherate”, J. Electroanalyt. Chem., 2005, 575(2), 287–292.

77.Lu G.W., Chen F., Wu W.F., Qu L.T., Zhang J.X., Shi G.Q., “Micro- and nano-structured conducting polymeric materials”, Chin. Sci. Bull., 2005, 50(16), 1673–1682.

78.Qu L.T., Shi G.Q., Liu C., Yuan J.Y., Qian W.B., “Preparation, characterization and electrochemical properties of polypyrrole-polystyrene sulfonic acid composite film”, Chin. J. Polym. Sci., 2005, 23(1), 37–46.

79.Qu L.T., Shi G.Q., Wu X.F., Fan B., “Facile route to silver nanotubes”, Adv. Mater., 2004, 16(14), 1200–1203.

80.Qu L.T., Shi G.Q., “Crystalline oligopyrene nanowires with multicolored emission”, Chem. Commun., 2004, (24), 2800–2801.

81.Qu L.T., Shi G.Q., “Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid)”, J. Polym. Sci. A Polym Chem., 2004, 42(13), 3170–3177.

82.Qu L.T., Shi G.Q., Yuan J.Y., Han G.Y., Chen F., “Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid”, J. Electroanalyt. Chem., 2004, 561(1–2), 149–156.

83.Yuan J.Y., Zhang D.Q., Qu L.T., Shi G.Q., Hong X.Y., “Direct electrochemical generation of conducting polymer microcontainers on silicon substrate”, Polym. Int., 2004, 53(12), 2125–2129.

84.Han G.Y., Shi G.Q., Qu L.T., Yuan J.Y., Chen F.E., Wu P.Y., “Electrochemical polymerization of chiral pyrrole derivatives in electrolytes containing chiral camphor sulfonic acid”, Polym. Int., 2004, 53(10), 1554–1560.

85.Li E.H., Huang Z.M., Shi G.Q., Qu L.T., Zhang J.X., “Electrochemical polymerization of beta-naphthalene sulfonic acid”, J. Appl. Polym. Sci., 2004, 92(3), 1939–1944.

86.Zhang Z.P., Shi G.Q., Wu X.F., Qu L.T., “Electropolymerization of 2-phenylthiophene”, Acta. Polym. Sin., 2004, (1), 140–144.

87.Yuan J.Y., Qu L.T., Zhang D.Q., Shi G.Q., “Linear arrangements of polypyrrole microcontainers”, Chem. Commun., 2004, (8), 994–995.

88.Qu L.T., Shi G.Q., “Electrochemical synthesis of novel polypyrrole microstructures”, Chem. Commun., 2003, (2), 206–207.

89.Qu L.T., Shi G.Q., Chen F., Zhang J.X., “Electrochemical growth of polypyrrole microcontainers”, Macromolecules, 2003, 36(4), 1063–1067.

90.Zhang Z.P., Qu L.T., Shi G.Q., “Fabrication of highly hydrophobic surfaces of conductive polythiophene”, J. Mater. Chem., 2003, 13(12), 2858–2860.

91.Huang Z.M., Qu L.T., Shi G.Q., Chen F., Hong X.Y., “Electrochemical polymerization of naphthalene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer”, J. Electroanalyt. Chem., 2003,

92.Qu L.T., Shi G.Q., Chen F.E., Zhang J.X., Fu M.X., Sun S.Q., “High-quality polyene prepared by liquid/solid two-phase dehydrochlorination of poly(vinyl chloride)”, Synth. Met., 2003, 135(1–3), 219–220.

93.Qu L.T., Sun S.Q., Liu C., Chen F.E., Hong X.Y., Shi G.Q., “Environmental stability of the polyene prepared by dehydrochlorination of poly(vinyl chloride)”, Chin. J. Polym. Sci., 2003, 21(1), 71–75.

94.Yuan J.Y., Qu L.T., Shi G.Q., Hong X.Y., “Novel polypyrrole microstructures generated by direct electrochemical oxidation of pyrrole on p-type silicon substrate”, Chin. J. Polym. Sci., 2003, 21(4), 399–403.

95.Liu C., Zhang J.X., Shi G.Q., Qu L.T., Chen F.E., “Proton-conducting gel polyelectrolytes based on Lewis acid”, J. Appl. Polym. Sci., 2003, 90(5), 1267–1272.

96.Zhang J.X., Shi G.Q., Liu C., Qu L.T., Fu M.X., Chen F.E., “Electrochemical fabrication of polythiophene film coated metallic nanowire arrays”, J. Mater. Sci., 2003, 38(11), 2423-2427.

97.Xu J.K., Shi G.Q., Qu L.T., Zhang J.X., “Electrosyntheses of high quality polypyrrole films in isopropyl alcohol solution of boron trifluoride diethyl etherate”, Synth. Met., 2003, 135(1-3), 221–222.

98.Huang Z.M., Shi G.Q., Qu L.T., Hong X.Y., “Electrochemical polymerization of beta-naphthalene sulfonic acid in the mixed electrolyte of boron trifluoride diethyl etherate and trifluoroacetic acid”, J. Electroanalyt. Chem., 2003, 544, 41–46.

99.Chen F., Shi G.Q., Fu M.X., Qu L.T., Hong X.Y., “Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film”, Synth. Met., 2003, 132(2), 125–132.

100.Wu X.F., Shi G.Q., Qu L.T., Zhang J.X., Chen F.E., “Novel route to poly (p-phenylene vinylene) polymers”, J. Polym. Sci. A Polym. Chem., 2003, 41(3), 449–455.

101.Wu X.F., Shi G.Q., Qu L.T., Chen F.E., Hong X.Y., “A novel route to poly(2-methoxy-5-(2 ‘-ethyl-hexyloxy)-p-phenylene)”, Acta Polym. Sin., 2003, (1), 147–149.

网站首页 | 实验室介绍 | 免责声明 | 在线留言 | 友情链接 | 联系方式 | 网站管理

版权所有©曲良体研究组 京ICP备2021012521号

Copyright © 2007-2022 , All Rights Reserve